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Abstract. A robust and reliable computational model of complex human systems 
dynamics could support advancements in theory and practice for social systems at all 
levels, from intrapersonal experience to global politics and economics. Models of human 
interactions have evolved from traditional, Newtonian systems assumptions, which 
served a variety of practical and theoretical needs of the past. Another class of models 
has been inspired and informed by models and methods from nonlinear dynamics, 
chaos, and complexity science. None of the existing models, however, is able to 
represent the open, high dimension, and nonlinear self-organizing dynamics of social 
systems. An effective model will represent interactions at multiple levels to generate 
emergent patterns of social and political life of individuals and groups. Existing models 
and modeling methods are considered and assessed against characteristic pattern-
forming processes in observed and experienced phenomena of human systems. A 
conceptual model, CDE Model, based on the conditions for self-organizing in human 
systems, is explored as an alternative to existing models and methods. While the new 
model overcomes the limitations of previous models, it also provides an explanatory 
base and foundation for prospective analysis to inform real-time meaning making and 
action taking in response to complex conditions in the real world. An invitation is 
extended to readers to engage in developing a computational model that incorporates 
the assumptions, meta-variables, and relationships of this open, high dimension, and 
nonlinear conceptual model of the complex dynamics of human systems. 

Keywords: Human Systems Dynamics, CAS, CDE, self-organizing, complex adaptive 
systems 
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1  Modeling Human Behavior 

A computational model1 that captures the nonlinear nature of the dynamics of human 
systems with fidelity would yield great benefits for scholars and practitioners who face 
emergent personal, professional, and political challenges. Scholars would use such a 
model to develop and test hypotheses about human behavior, institutional development, 
and evolution of industrial and political ecosystems. Practitioners would use a robust 
nonlinear model to inform decision making in real time and instructional programs to 
develop knowledge and skills required in complex environments. Individuals and groups 
would build adaptive capacity to see, understand, and influence complex and 
unpredictable patterns as they emerge.  

Many different quantitative and qualitative, rigorous and imaginative models are 
currently used for all of these functions. Rational choice theory, statistical analysis, 
systems dynamics modeling, adaptive leadership, Myers Briggs Type Indicator, Strength 
Finder, Technology of Participation, and so on are just a few examples. All of these 
models support useful methods of research and practice in a variety of con-texts. Each 
one also has limitations based on its fundamental assumptions about the dynamics of 
human systems. The most rigorous of the existing models may apply only in narrowly 
defined theoretical contexts. The most imaginative, without benefit of disciplined 
research, may prove to be ineffective or even destructive in practice.  

While these models of human interaction have served well enough in the past, their 
inherent weaknesses are beginning to show. They assume clear and distinct boundaries 
in space, time, and function, and our global economy transcends all bounds. They 
assume a low number of relevant variables and clear indicators of performance. The 
recent focus on systemic issues such as sustainability underscores the need to consider 
many factors at the same time, some of which are unpredictable or ambiguous. They 
assume linear cause and effect. Today massively complex information and resource 
networks contribute to nonlinear effects that cannot be ignored. As the world becomes 
more complex, the choices we have made to simplify our models seriously limit their 
reliability and usefulness.  

 
 
1 We will use the term model throughout to refer to “a simplified description, especially a 

mathematical one, of a system or process to assist calculations and predictions.” 
(Oxford Dictionaries Online. (n.d.). Oxford Dictionaries Online. Retrieved from 
http://oxforddictionaries.com/. ) We will characterize all systemic representations 
including qualitative and quantitative, positivistic and interpretive as models. We will 
make the distinction explicit when referring specifically to simulation, mathematical, 
conceptual, or computational models. 
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As challenges of humanity become more complex, the limitations of these models turn 
into fatal flaws. When individual, corporate, social, and political patterns are radically 
open to external influences, assumed boundaries of a model become irrelevant. As 
human systems at all levels are shaped by innumerable and constantly changing 
variables, model assumptions about a small number of dependent and independent 
variables are no longer valid. As our challenges involve more and faster feedback loops, 
model assumptions of linear cause and effect prove insufficient to capture the emergent 
dynamics of the system. In short, as human systems become more complex, our 
models—even the complicated ones—are not sufficient to inform either our research or 
our practice. Today’s global challenges exceed the capacity of our historical models of 
human systems dynamics. Robust theory and effective practice demand a new 
generation of models and modeling techniques.  

Even with all their flaws, the models of human interaction that currently exist pro-vide 
insights to support historical analysis, current decision making, forecasting, and 
planning. In the same way that Ptolemy gave a “good enough” model of celestial 
movement, social and economic models of the 20th century have been “good enough” to 
guide thinking and action across all levels of meaning making and action taking. Just as 
Copernicus introduced an alternative model to solve challenges that could not be solved 
under Ptolemy’s geocentric worldview, we need a new model of human systems 
dynamics that will allow us to transcend the limitations of our past theory and practice 
to respond to uncertainty and radical emergence of our complex reality.  

Today, the inherent weaknesses of the existing models are increasingly apparent. 
Decision makers in all sectors and industries realize the limitations of the models and 
methods available to inform their action. Economists acknowledge that the conditions 
resulting in crisis and collapse are not represented in their econometric models. In spite 
of sophisticated technologies, intelligence communities have insufficient power to deal 
with the challenges of information collection, collaboration, and interpretation in the 
midst of unpredictable and complex networks of insurgents. Political upheavals, social 
movements, violent and nonviolent conflict generate phenomena that we urgently need 
to understand and influence. Around the world, institutions find themselves 
overwhelmed and without sufficient tools to see emerging patterns, understand their 
implications, and generate and select options for action to influence systemic patterns of 
health or sustainability.  

Over the past two decades, research into nonlinear dynamics has revolutionized models 
and methods in a variety of physical science and mathematical disciplines. Techniques 
emerging from the study of nonlinear physical systems, such as nonlinear time series 
analysis and dynamical network theory, have been applied to social systems dynamics 
with some success. Research and practice indicate that even those models have limited 
utility in shaping effective theory and practice in complex social systems.  
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In this paper, we will explore usefulness and limitations of some of the models of social 
interaction that have influenced research and practice in psychology and economics. We 
will also describe benefits and constraints of innovative methods that have emerged 
from nonlinear dynamics applied to social systems. We will explore these approaches in 
the contexts of the open, high dimension, and nonlinear patterns of today’s complex 
human systems dynamics. We will introduce a conceptual model of the human systems 
dynamics based on a nonlinear paradigm of systemic interaction and emergent 
structuration. Based in both theory and practice, this conceptual model informs action 
while it assumes open, high dimension, and nonlinear dynamics of social systems at all 
scales. Finally, we will invite colleagues to engage with us to develop a computational 
model to quantify and test this emerging conceptual model. 

Our experience is that this new conceptual model of human interaction resolves is-sues 
of previous models and helps individuals and groups see patterns in emergent systems, 
understand their implications in given contexts, and take intentional action to influence 
the patterns as they emerge. We speculate that this conceptual model might provide a 
strong theoretical grounding for a computational model to inform theory and practice, 
and that such a computational model would be robust enough to address our emerging 
challenges in complex human systems. After introducing the conceptual model and 
speculating about a possible computational implementation, we will propose a research 
agenda and invite colleagues to join us in creating a computational model that exceeds 
the benefits and resolves the risks of existing models of human systems dynamics and 
their applications in theory and practice. 

2  Traditional Models of Social Interaction 

“Essentially, all models are wrong, but some are useful.”1 Diverse fields in social 
sciences develop and apply mathematical and qualitative models and methods to 
represent human behavior. Each one has emerged from a specific discipline to respond 
to specific questions and inform certain kinds of decision making. Like any other model, 
each model applied to human interaction has its own inherent limitations.  

2.1  Sources and Applications of Traditional Models 

Models of human behavior have emerged from many different social sciences. Political 
science, education, arts, anthropology, industrial engineering, sociology, and a wide 
array of other fields focus on specific aspects of human systems and human behavior. 
Within each of these fields, a variety of conceptual and some computational models 
inform theory and practice. For the purposes of this paper, we will focus only on 
illustrative examples drawn from the fields of psychology and economics. Detailed 
analyses and critiques of even these models are beyond the scope of this paper. We 
intend only to acknowledge the widely accepted notion of the gap between human 
systems as they are experienced and as they are captured in current models.  
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Psychological models are based on a variety of theoretical frameworks and support 
diverse practical applications. For example, biological and cognitive models of time have 
emerged from psychological research and practice.1 Models of mood disorders are 
diverse and emerge from a wide variety of theoretical frameworks.3 Decision making is 
another application of psychological model making.45 One class of psychological decision 
models is particularly applied to intelligence efforts and the decision making and action 
in the intelligence community. Judgment and Decision Making (JDM), Analysis of 
Competing Hypotheses (ACH), Naturalistic Decision Making (NDM), foraging, and various 
group decision-making models6 are all applied to the field of intelligence collection, 
analysis, and action.  

These and many other models emerge from psychological research, and they can be 
applied with good purpose to enhance theory and practice when individuals and groups 
seek to see, understand, and influence change in social systems. As useful as they are, 
these psychological models are limited to specific contexts and challenges, and they are 
applicable at a limited number of human systems scales. Some focus on the individual 
(and occasionally a small group) level of organization in human systems. Other sets of 
models deal with patterns at the community, institution, or nation-al scope. None of 
them are intended to speak simultaneously to all of the open, high dimension, and 
nonlinear patterns that emerge across the complex systems of human dynamics. In 
addition, most of these models are not amenable to computational modeling or other 
quantitative methods of inquiry. The lack of commensurability between qualitative and 
quantitative representation of dynamics fuels the on-going conflict between positivistic 
and interpretive epistemologies and research methodologies. The closer traditional 
models come to realistically describing open, high dimension, and nonlinear phenomena, 
the more difficult it becomes to represent their dynamics in mathematical or 
computational models. Simplicity and fidelity are constantly in tension in the whole 
range of models of psychological interaction. Where one succeeds, the other fails.  

Economic models, from statistical analyses to rational choice theory and chaotic 
dynamics7, have shaped individual, institutional, and market decision making for 
decades. The reliability and usefulness of such representations have been challenged for 
equally as long.8 In spite of their acknowledged limitations, models of macroeconomic 
patterns of global interactions have become relatively common. They are used to 
influence decisions that affect global politics and commerce.9 The reliability, robustness, 
and relevance of economic models can be characterized in many ways, but each model 
stands on its own foundation of assumptions and acceptable methods.10 
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The insufficiency of current economic models is widely understood. In January of 2011, 
Ban ki-Moon, Secretary General of the UN proclaimed: 

It is easy to mouth the words “sustainable development”, but to make it happen, 
we have to be prepared to make major changes — in our lifestyles, our economic 
models, our social organization and our political life. We have to connect the dots 
between climate change and what I might call here WEF — water, energy and 
food.11 

The systems we seek to sustain—physical, economic, social—are open, high dimension, 
and nonlinear. Models we use to represent those systems must be able to capture such 
complex dynamics. If we are to think simply and with fidelity about these systems, we 
must have new models that capture the complex dynamics of economic systems and 
their behavior. The current disconnect between micro- and macroeconomic models is 
one example of this challenge. Economic models isolate local action from the global 
patterns that capture consequences. The lack of integration also makes it difficult to 
incorporate emergent global patterns into local decision making. Global outcomes that 
depend on local action require new models for economic behavior that scale across 
levels of analysis and action while accounting for the massive complexity of nonlinear 
dynamics within every scale and among all scales. Current economic models are not able 
to satisfy any of these requirements.  

We might add to this list of economic and psychological models ones from political 
science, sociology, management, organization development, education, and many other 
social sciences. All of these models are useful for their intended purposes, but none are 
robust enough to represent complex dynamics of human systems in ways that inform 
understanding or action in systems that exhibit complex, nonlinear, emergent 
phenomena. When we acknowledge that human systems are simultaneously open, high 
dimension and nonlinear, these models fall short in a variety of ways. 

2.2  Limitations of Traditional Models 

Traditional models serve many purposes, but they are not able to represent the complex 
dynamics of human systems as we experience them individually or in groups. Their 
major limitations emerge from assumptions of 1) a single level of analysis rather than 
massive interdependencies across scales; 2) closed boundaries rather than open 
interactions with emergent environmental landscapes; 3) low dimensionality rather than 
high and/or indeterminate number of relevant variables; 4) linear causality rather than 
nonlinear relationships and mutual causality; 5) random variability supporting statistical 
analysis rather than significant levels of ambient background correlation. While they 
make the problems more tractable, these assumptions also limit the usefulness of the 
models to address real dynamics of real problems.  
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Traditional models of human interaction tend to focus on a single scale of human 
activity. Like the disciplines from which they emerged, current models focus on one or at 
most two specific levels of social organization. One model might consider the state of the 
individual in relation to the group dynamics. Another might look at the firm in relation to 
a market. Yet another might consider political entities and their interactions in global 
patterns of behavior. None of the models support a look across levels or at the 
interactions among multiple levels. None capture the scale-free pat-tern-forming 
processes that are common in complex adaptive systems. Even though we  are keenly 
aware that global interactions can influence and be influenced by individual or group 
decision making, our models continue to represent one level in a way that is 
incommensurable with the levels above and below it. While some techniques, like 
traditional systems dynamics modeling, can include models within models to represent 
multiple levels of underlying dynamics; still, the ability to generalize insights or actions 
across scales is severely limited.  

This limitation of being scale-bound is neither trivial nor merely theoretical. In many 
fields, analysis at the micro and macro scales are totally incommensurate, so critical 
information is not able to flow between local and global meaning making and action. 
Incidents of violent conflict demonstrate the effects of missing inter-scale 
communication. Individual peace makers interact with individuals in communities on the 
ground. They may use conflict resolution models and methods to quell emerging conflict 
between neighbors in a neighborhood. At the same time, the economic and geopolitical 
analyses may capture critical contextual cues that are not visible from the ground, but 
miss the messages that are local and specific to a particular hotspot. As a result, model-
informed insights about both the local and global patterns are incomplete, and decision 
making and action taking in both contexts are constrained. Increasingly, social scientists 
refer to macro-, meso-, and micro-levels of interaction. While moving from one or two to 
three levels of analysis is definitely an improvement, such a conceptualization still 
misses the scale-free interdependence that is critical in the dynamics of complex 
adaptive systems.  

The second limitation of current models is that they require human systems to be 
bounded in space and/or time. Traditional models that represent human interaction are 
based on assumptions that limit the conceptual definition of a situation to make its 
problem space more tractable. Bounding conditions increase certainty, so limiting 
assumptions make it easier to manage the mathematics or theoretical descriptions. On 
the other hand, each assumption that limits the problem space makes it more difficult to 
correlate model behavior to real human behavior in the living system. Of course this is 
the purpose of the model—to represent the system in a simplified way. In the past, the 
trade-offs between bounded simplicity and real-world fidelity were manageable. 
Phenomena of social systems were simple enough that our finite, constrained 
representations were sufficient to inform theory and practice. As our local and global 
situations become more complex, however, it is increasingly difficult to support the 
delusion that our situations are as bounded as our models assume them to be. A robust 
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and reliable model of human interaction must acknowledge and incorporate open system 
relationships if it is to support meaningful theory building, pragmatic decision making, 
and effective action.  

While we know that all social systems are open to external influence, theoretical and 
mathematical models are seldom able to represent such open boundaries. Even the 
most closed examples of human institutions—prisons or fascist regimes—are subject to 
external influences. Many modeling methods constrain these unpredictable influences by 
artificially bounding the system in time or space. While such a com-promise makes the 
mathematics more tractable, it limits the correspondence between behavior of the model 
and a real human system—whatever the scale.  

High dimensionality is the third complexity of real human behavior that is difficult (if not 
impossible) to capture in traditional conceptual or mathematical models. Per-force, our 
models assume that any human decision or action depends on a finite number of 
relevant variables; while we know even the simplest decision in real life may be driven 
by a large and unpredictable number of parameters. Not only is the number of variables 
that influence human behavior high, they also change constantly. At one time, for 
multiple individuals or at different times for the same individual, different considerations 
will influence a particular decision or action. If this is true at the level of the individual, it 
is even more obvious for communities, institutions, or nation states.  

This radical diversity of complex human systems is a major challenge to effective 
modeling. One drawback of any model is the distinction between the generalized, 
abstracted, perfect case represented in the model and the specific, embodied, particular 
example that occurs in reality. In order for a model to apply to a variety of many cases, 
assumptions had to limit the amount of variability among the cases in the system. In so 
far as the variability was limited, the model would fail to represent the particular.  

Some models, such as those founded on rational choice theory, simply denied local 
variability in order to represent a consistent general case. Other models, including all of 
those based in traditional statistics, assume a random distribution of phenomena across 
a context. Beginning with the random distribution, modelers use statistical analyses to 
discern and characterize patterns of interaction and intention that might emerge over 
time. For example, when you assume random distribution, you can focus on average 
behavior as representative of the whole. Again, this strategy has been “good enough,” 
but it breaks down in the class of systems considered to be complex adaptive. These 
systems generate system-wide patterns, so they do not begin from a state of normal 
distribution. When the goal is to model how individuals are influenced by each other, it is 
not “good enough” to imagine that their cultural or personal patterns are random to 
begin with. If human beings have free will and if they influence each other, which most 
model makers and users would like to believe, then we cannot assume an initial random 
distribution. Each individual case has the freedom to vary in unpredictable ways and the 
assumption of zero natural correlation, which is required for statistical analysis, is no 
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longer valid. When agent behavior is naturally and unpredictably correlated, as happens 
when many human beings are connected, their individual actions, driven by their free 
will, influence each other. As a result, we cannot assume a random distribution as a 
precondition for statistical analysis of overall system behavior, whether the system is a 
person, a group, institution, or community. We need a different way to conceptualize 
non-random, unpredictable differentiation that is common in our observations and 
experiences of human systems dynamics. 

Statistical analysis has been applied in the social sciences to deal with radical variability. 
It allowed social scientists to analyze complex data and to see patterns as they emerged 
from messy, diverse, localized data. Traditional statistical methods, however, derive 
from fundamental assumptions about random distribution of underlying behaviors. If the 
normal curve represents normal distribution of behaviors, then deviation from that norm 
can be tested and interpreted in meaningful ways. In some situations—those that focus 
on closed system, low dimensionality, and linear causality—it can be valid to assume 
random distribution of behaviors in human systems. However, cursory observation of 
human beings and their institutions can quickly demonstrate that underlying dynamics 
are anything but random when individuals or groups make decisions or take actions. 
Patterns in complex social systems are simply not randomly distributed.  

  Narrative is one modeling method that has successfully been used to represent open, 
high dimension, nonlinear, and locally variable phenomena12. Stories are powerful ways 
to represent reality in its own language, including its most complex characteristics. 
While the uses of narrative are becoming increasingly robust and rigorous13 the dilemma 
of how to generalize or abstract narrative as a model of social interaction has not been 
resolved. Two computer-based narrative analysis methods are able to derive complex 
patterns of meaning from narrative data. CRAWDAD (www.crawdadtech.com)14 uses the 
linguistic technique of centering resonance analysis to detect relations among noun 
phrases in a natural language sample and represent those relationships as a network of 
meaning.15 Quantitative analysis of the network provides rich information about the 
patterns encoded in a narrative selection. Sensemaker (www.sensemaker-suite.com)16 is 
another software-based narrative analysis process that transforms narrative into 
patterns of meaning. While both products create open, high dimension, and nonlinear 
models of narrative text, they share limitations of other complexity-inspired models 
which we will discuss later.  
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Historical models of human behavior have understandably compromised fidelity to make 
models more tractable and more generalizable. They focused on a single level of 
analysis; they bounded systems, focused on a small number of variables, assumed 
linear causality, avoided free will and interdependency by assuming random distribution 
of behavior. While such models serve specific purposes, they do not capture the complex 
dynamics that are relevant to decision making and action taking in the 21st century. In 
efforts to adapt models to match reality, many social scientists have embraced a variety 
of complexity-inspired modeling methods. We will explore some of those methodologies 
next. 

3  Complexity and Social Interaction 

Traditional models of human interaction and human behavior have drawn from 
traditional scientific, linguistic, and mathematical models and methodologies. Since the 
mid-1970s, new and more complex analytical methods have emerged, and they have 
been applied to research and modeling of human systems.17 These approaches break 
through some of the limitations of traditional approaches to modeling social systems 
because they deal explicitly with nonlinear causality. On the other hand, they fall prey to 
some of the traditional limitations while introducing some new limitations of their own. 
We will briefly introduce five modeling approaches that have been derived from 
nonlinear dynamical methods, explore how they support decision making and action 
taking in complex human systems, and explore their limitations as true and useful 
representations of complex dynamics of human systems for research and practice in 
complex and uncertain environments. 

3.1  Sources and Applications of Complexity-Inspired Models 

Beginning in the mid-1970s and continuing to the current day, models, methods, and 
insights of the nonlinear dynamics in physical and mathematical systems have been 
applied to explore human systems dynamics. Scholars and practitioners have used these 
approaches more and less metaphorically to create simple models of complex human 
system behavior at a variety of scales. Five categories of models have been particularly 
useful, and we will describe them briefly here:   

► Catastrophe theory 

► Dynamical network theory 

► Nonlinear time series modeling 

► Agent-based simulation modeling  

► Power law dynamics 
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Renee Thom’s catastrophe theory18 emerged as one of the earliest quantitative models 
of complex dynamics. Not only did it deal with nonlinearity, but it also included ways to 
capture high-dimension interactions. It has been applied in many ways to social 
systems, including applications to error and injury rates and growth of firms19. While 
catastrophe theory showed great promise in its ability to represent the dynamics of 
complex human interactions, it had limited practical use for a variety of reasons. First, 
the mathematical sophistication of the model made it complicated and difficult for 
practitioners to understand. In addition, its graphical representations of systems in more 
than three dimensions were impossible to see and even difficult for most people to 
imagine. So, while the qualitative explanations of Thom’s work were powerful and early 
interest in them was great, the quantitative applications proved too complicated to be 
useful for decision making and action taking. Within a few years, the promise of 
catastrophe theory as a definitive model of human interaction faded from most scholarly 
and practitioner applications.  

Dynamical network theory20 has been used extensively as a powerful modeling method 
to explore market potential, social cohesion, and dissemination of information21 and 
innovation.22 In the past decade, a variety of software packages23 have come on the 
market to simplify the methods of collecting and analyzing network-related data. 
Measures of network properties such as clustering, connectedness, density, and 
centrality have opened new ways to see and understand the patterns of social 
interaction and emergent social structures. Online social network sites have helped 
make such models familiar to the public and have accelerated the acceptance of 
network-based models of social systems. Stages of network evolution, from hub and 
spoke to scale-free structures, have informed an understanding of the development of 
social and computer networks over time. While this approach solves many of the issues 
of pre-complexity models, it is essentially descriptive, providing a snapshot of a current 
state without explanation of what came before options for action to influence the future.  

One of the earliest modeling methods from deterministic chaos involved a process of 
nonlinear time series analysis.24 In this method, an extended time series is analyzed and 
plotted in phase space, looking not at change through time, but comparing the change in 
non-time variables from one point to the next across the entire time series. Such 
analysis allowed the researcher to characterize the nonlinear phenomenon as following 
the pattern of a random, point, periodic, or strange attractor pattern. Further analysis of 
the time series could reveal the dimensionality of the phenomenon by pointing to the 
number of key variables involved in the dynamics that shaped the pattern. In the early 
90s many researchers used methods of nonlinear time series analysis, searching for 
strange attractors as evidence of deterministic chaotic dynamics in social systems. Three 
challenges emerged in using this approach either for theory or practice development. 
First, the analytical method required a long and reliable time series as input data, and 
appropriate data was not often available from the systems under examination. Second, 
the mathematics required for the analysis were so complicated that they were not well 
understood by many researchers, so they were embedded in a variety of automated 
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analysis tools. Lack of basic understanding of the underlying method led to a variety of 
errors in analysis and interpretation, including misinterpretation and artifacts of the 
analytical methods themselves. The third challenge was embedded in practice. Even 
when strange attractor patterns were reliably discerned in time series data, the 
interpretation and meaning making based on the results were not clear or compelling. 
For these reasons and others, attractor pattern reconstruction as a modeling method to 
support decision making and action taking in human systems has been relegated to a 
small number of highly technical research applications. 

Agent-based computer simulation modeling has become a popular research method to 
demonstrate processes and outcomes of self-organizing dynamics of social systems25 in 
decision science26, financial markets27, sociology28, information and political science29, 
conflict analysis30, and a wide variety of other social science applications31. Given a set 
of initial conditions and agent characteristics, semi-autonomous agents in the model 
follow local rules, learn adaptive behaviors, and contribute to formation of system-wide 
patterns. These models can be used to visualize data about interactions, to test 
hypotheses regarding conditions and paths of self-organizing processes, and to teach 
about dynamics of complex change in human systems. The premier institution 
committed to the study of agent-based modeling and its influence in both physical and 
social sciences is the Santa Fe Institute (http://santafe.edu/). They have used the 
method to model and explore a wide variety of dynamical systems and emergent 
phenomena. Though they demonstrate relationships between initial conditions and 
outcomes based on simple rules, the abstract and generalized structure of an agent-
based simulation model limit its usefulness for decision making and action taking in real-
world situations.  

Per Bak led one group that pioneered our fifth and final method of nonlinear modeling 
for human systems, the power law.32 Power law dynamics, sometimes called Pareto 
distributions and Zipf's Law, have been used to describe major transition phenomena of 
markets and market development33. The idea was popularized as the “long tail” of 
internet-driven business models34. Power law dynamics have also been used to describe 
dynamics of population migration, violent conflict, and addiction. Because of its ability to 
capture inter-level dynamics and to account for discontinuous change, the power law has 
become one of the symbols of the changing dynamics of human systems. The power law 
is scale-free, so it works at every level of human system, from brain dynamics to world-
wide conflict. The challenge is that there is currently no robust theoretical explanation of 
why these mathematical relationships emerge over time in complex systems, so the 
model can be used to analyze data ex post facto, but it is not yet used in a rigorous way 
to inform prospective decision making and action.  
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All of these modeling methods have emerged from the study of nonlinear dynamics in 
physical and mathematical systems. They have been applied to human systems in an 
effort to develop models and methodologies that support better observation, 
understanding, and intentional action in all scales of social systems from intrapersonal 
reflections to international relations. Each one of these modeling techniques brings a 
special feature that helps the researcher or observant practitioner engage effectively and 
perform well in social systems that may be far-from-equilibrium and actively emergent. 
All of these models, however, share two characteristics that limit their usefulness when 
they are applied to real dynamics in situations of real decision making and action taking.  

3.2  Limitations of Complexity-Inspired Models 

Each of these models transcends some or all of the limitations of traditional methods of 
modeling human systems. The table below provides a brief analysis of the five modeling 
methods and their relationship to the five limitations of the traditional models described 
above. Exceptions to these simple categorizations may certainly exist. Hybrid methods 
and models are emerging across many fields of study, but in general, these families of 
approaches share the assumptions described here. Networks and power law analyses 
deal with multiple levels of analysis and are able to represent massive interdependencies 
across scales. Networks, agent-based models, and power law distributions assume the 
possibility of open system boundaries. All of these methods except agent-based 
modeling assume high dimensional dynamics, and all of the methods account for both 
nonlinear and non-random pattern formation.  

Table 1. Limiting assumptions for complexity-inspired models of  
human systems dynamics. 

Model 
Characteristics 

Catastrophe 
Theory 

Dynamical 
Networks 

Nonlinear 
Time 
Series 
Analysis 

Agent-
Based 
Modeling 

Power-
Law 
Dynamics 

Multi-level  X   X 
Open  X  X X 
High dimension X X X  X 
Nonlinear X X X X X 
Non-random X X X X X 

 

These models share a more robust set of assumptions than previous modeling 
approaches, and they account for social systems’ complex and nonlinear dynamics. They 
are far superior in representing the emergent dynamics of complex human inter-actions 
in the real world, but they still have two characteristics that limit application to formal 
and informal real-time decision making and action taking in social systems.  
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First, they are all inductive models, so they can only provide analysis in retrospect. None 
of them support effective forecasting or even anticipation of future pattern formation. All 
of these methods draw data from the past to describe relationships and transformations 
that happened in the past. Time series analysis requires a long and detailed data set 
extracted from previous events. Network analysis captures past and current nodes and 
edges, but it usually does not help anticipate or recommend action for the future. Being 
a node in an information network can certainly inform decision making and empower 
action taking, but creating a network model from empirical data does not inform options 
for action or risk and benefit calculation except in very limited cases. Catastrophe theory 
bases model characteristics on existing data and its models represent historical 
dynamics. Agent-based modeling and power law dynamics both start with sets of 
assumptions, but the findings of the models are descriptions of historical systemic 
behavior as opposed to anticipation of future patterns of behavior. In essence, none of 
these models have the power to anticipate future patterns or to provide intelligence that 
can inform future action for decision makers who are engaged in self-organizing 
dynamics in real time. 

On the one hand, this reliance on historical patterns is to be expected because complex 
dynamical systems are sensitive to initial conditions and, by nature, are unpredictable. 
You would not expect a model based on emergent dynamics to be predictive. On the 
other hand, if a model is to be of service to real decision makers in real situations, it 
must provide some level of intelligence about underlying dynamics and ways to 
intervene to influence an emergent future. An effective model also needs to provide 
information about the dynamics in any given moment to inform action that might shift 
those dynamics for future benefit. All of these complexity-inspired models are backward 
looking, and none of them propose a causal mechanism, so none of them are able to 
meet the requirement of support for prospective decision making in real human 
systems.  

Second, the models are descriptive rather than explanatory. A descriptive model 
represents the “symptoms” of dynamical self-organizing processes. These models help 
describe the behaviors that emerged over time in complex human systems. We can use 
them to determine whether the system patterns conformed to multi-dimensional 
manifolds (catastrophe theory); generated or broke connections (network theory); 
showed coherent behavior in phase space (nonlinear time series analysis); generated 
system-wide patterns from local interactions (agent-based simulations); or generated 
constant ratios between numbers and sizes of events (power law). Each of these models 
describes patterns that emerged among the components of a given system, but they do 
not capture explanations for those dynamics. An explanatory model, on the other hand, 
provides information about the underlying relationships that set conditions for 
observable behaviors to emerge. For example, the life cycle of the rhinovirus is an 
explanation for the common cold, while a runny nose is a true, but descriptive, 
symptom. Effective intervention depends on the explanation, and current complexity-
inspired models of human behavior provide only descriptions. 
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We should note two possible exceptions to this rather radical observation. Per Bak and 
others who work with power law dynamics hypothesize a variety of explanatory 
theories.35 Bak, himself, speculates that power law dynamics emerge from cycles of 
accumulation and release of tension among agents at various levels in a complex 
system. When enough tension accumulates in one scale of the system, structural 
changes take place in scales either above or below to release the tension and reach a 
more stable state. This mechanism is incorporated in the model we will propose shortly. 
The other notable possible exception is the work of June Holley regarding her network 
weaving approach.36 Her work is derived from extensive experience in supporting 
development of entrepreneurial networks, but the connections between her practical 
advice and the structure of dynamical models is not always explicit. Her insights have 
also informed our emerging conceptual model as well as our practice in real human 
systems. With these slight exceptions, most models from the nonlinear array can, at 
best, describe the world as it has been. They cannot inform theoreticians or practitioners 
about why those patterns emerged or how they might be influenced.  

Traditional models of physical and social dynamics provided explanations for phenomena 
in social systems, but they were of limited use because they drew from Newtonian 
mechanics, in which systems were closed, low dimensional, and linear. In those 
situations, the causality and explanations were clear, but not trustworthy when applied 
to complex human systems. In complex dynamics, where none of these limiting 
conditions persist, a new explanatory model is to inform human action inside emergent, 
complex adaptive systems.  

Finally, because the complexity-inspired models are neither prospective nor explanatory, 
they cannot support decision making or action taking in a moment. They do represent 
systemic patterns of the past and can certainly support meaning making for individuals 
and groups who want to understand historical patterns. But if the goal is to create a 
computational model that informs wise forward-looking action, then it must be based on 
a conceptual model that provides prospective insight and explanation of self-organizing 
dynamics that help people see, understand, and influence patterns as they emerge in 
complex systems. 
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4  Conceptual Model of Human Systems Dynamics 

The challenge is to develop a computational model and modeling methodology that 1) 
represents the complex and unpredictable dynamics of human systems; 2) works at all 
scales from intrapersonal to global; 3) provides information about the possible futures of 
systemic behavior, even knowing that the future of complex systems cannot be 
predicted or controlled; 4) provides sufficient explanation of interactions within the 
system to inform options for action; 5) reveals meaningful patterns even in systems that 
are open, high dimension, and nonlinear; 6) represents the diversity of the parts and the 
coherence of the whole simultaneously; and 7) provides sufficient explanatory 
foundation to inform wise and responsible action, even under conditions of the greatest 
uncertainty. The computational model must be based on a conceptual model that 
rigorously meets all of these criteria, as well.  

Social sciences are not the only contexts in which this challenge exists. Even across the 
physical and mathematical sciences, no single conceptual model of complex systems 
dynamics has proved to be general and robust enough to be universally accepted today. 
Fitness landscapes37, dissipative structures38, power law dynamics39, synergetics40, and 
dynamical networks41 have all proven to be useful conceptualizations of complex 
dynamics, but none dominate across disciplines. Even in these con-texts of physical and 
biological sciences (which are substantially less open, high dimension, and nonlinear 
than human systems), no model is accepted as a definitive representation of all complex 
adaptive phenomena. All accept limitations that com-promise fidelity or specificity in 
favor of tractability. 

We propose an alternative conceptual model of human systems dynamics that is derived 
from patterns common to a wide variety of physical science and mathematical models of 
complex adaptive systems. This emerging model also draws from philosophical 
foundations of perception and knowledge that are unique to the functioning of human 
systems. It is grounded in conscious and intentional action with real groups facing real 
challenges in organizations and communities42. In both theory and practice, this 
conceptual model captures the dynamics of human systems at all scales, in ways that 
inform decision making and action taking in complex and uncertain environments.  
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4.1  Conditions of Self-Organizing in Complex Systems 

We accept the definition of complex adaptive system (CAS) as a collection of semi-
autonomous agents that have the freedom to act in unpredictable ways, and their 
interactions generate self-organized patterns across the entire collection. As patterns 
form in the system, they constrain the options of the agents in subsequent phases as 
this self-organizing process continues.43 We use an operational definition of pattern as 
similarities, differences, and connections that have meaning across space and/or time. 
Examples of CAS and the patterns they form are myriad in physical systems (e.g., 
whirlpools, heart rate variability, embryonic development, crystal formation), but we will 
focus here on such processes as they influence human systems. In the context of human 
experience, intrapersonal reflection and emotional and cognitive experiences generate 
self-organizing patterns for individuals44. (Some even argue that consciousness itself is 
self-organizing processes of a complex adaptive system45, but that conversation is 
outside the scope of our current exploration.) Two or more people who form a coherent 
group for learning, work, or play function as agents in the complex adaptive system46 of 
a group. Neighborhoods can be seen as CASs as well as agents that contribute to the 
patterns of an urban landscape. Firms self-organize from within and participate in 
emergent patterns of markets and industries. Provinces, nations, national allies all are 
examples of CASs in the realm of human systems.  

It is one thing simply to say that human systems self-organize. It is another to track 
self-organizing processes in retrospect through case study narratives, nonlinear analysis 
of time series, construction of network maps, and so on. Existing conceptual and 
computational models, as described above, are sufficient for such descriptive 
investigations. Analysis that supports proactive decision making in a complex human 
system, however, requires more. It requires an understanding of the conditions that 
influence the speed, path, and outcomes of self-organizing processes.  

Examination of diverse models of self-organizing processes in non-human complex 
systems revealed that self-organizing patterns only emerged under certain conditions. 
Any complex adaptive system only generates patterns when it is constrained in some 
way. The Belousov–Zhabotinsky reaction requires a containing vessel, a certain 
temperature threshold, and very particular chemical gradients. An ecosystem will be 
bounded in space and requires predator, prey, and reproductive interactions among 
organisms. Fractals require a nonlinear equation to act as a seed and the context of the 
complex number plane. A fitness landscape requires specific parameters that define 
fitness and feedback loops to determine survival on the landscape over time. A laser 
beam depends on both control and order parameters. A scale-free network has nodes 
and hubs with specified characteristics and criteria for connection. Without any 
constraints, regardless of the system or its substrata, no pattern self-organizes. 
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The same realization about the necessity of constraint in pattern formation came from 
personal and professional experience in social systems. Self-organizing processes in 
complex human systems, such as large group meetings or team performance, required 
some constraining conditions for patterns to emerge. Depending on those conditions, 
pattern formation was sometimes fast, direct, and clear. In other circumstances, the 
process of pattern formation was slow, wandering, and messy. Within a particular self-
organizing process, the patterns were sometimes coherent and distinct, and sometimes 
they were distorted or ambiguous. Sometimes the emergent patterns were healthy or fit 
to purpose, and sometimes they were dysfunctional. Sometimes the self-organizing 
process moved quickly through exploratory stages and into exploitation. At other times 
the process got stuck in exploration and productive patterns emerged slowly, if at all. 
Patterns at the individual scale were sometimes in conflict with those at intrapersonal or 
group scales, and patterns in two separate parts of the system often contradicted each 
other. 

These variations on the process of human systems emergence were not random. They 
were influenced by the context, and the context was formed by other self-organizing 
processes in other places and times. As one pattern emerged, it influenced the 
conditions that informed the speed, path, and outcomes of other patterns in the vicinity. 
This interdependency among patterns held whether the patterns were in scales above or 
below, or in remote parts of the system at the same scale. This mechanism of 
constraints influencing emergence of shifting, interdependent patterns held across 
environments, contexts, and levels of analysis.  

The question emerged for us:  Would it be possible to identify parameters that 
influenced the variability of self-organizing processes, while acknowledging the open, 
high dimension, and nonlinear nature of self-organizing in human systems?  If so, those 
parameters could be used to see self-organizing patterns in the moment, under-stand 
their potential for future pattern formation, and influence the conditions to nudge the 
emerging pattern toward desired outcomes.  

These conditions that result from one self-organizing process and influence other self-
organizing processes were the focus of our investigation and the foundations for the CDE 
Model for the conditions for self-organizing in human systems. CDE stands for the three 
fundamental, necessary and sufficient clusters of constraining conditions:  container, 
difference, and exchange. The CDE Model is grounded in a multi-disciplinary study of 
nonlinear dynamics in a wide range of physical and mathematical sciences as well as 
action research in diverse human systems settings47. We will first introduce the model, 
then articulate ways in which it meets all of the criteria earlier defined for a conceptual 
model to inform theory and practice in complex human systems. 

	  



 
Toward a Computational Model 

16MAY16 
Page 19 of 33 

©2016.Human Systems Dynamics Institute. Use with permission. 

4.2  CDE Model for Conditions of Self-Organizing in Human 
Systems 

The CDE Model of conditions for self-organizing in human systems is a qualitative 
conceptual model of a set of meta-variables that represent a wide variety of constraints 
that influence the speed, direction, and outcomes of self-organizing processes in human 
systems. The characteristics of these meta-variables and the nonlinear 
interdependencies among them form the foundation of a model of human systems 
dynamics that meets all of our criteria for a useful way to support seeing, 
understanding, and influencing the complex dynamics of social systems at all scales.  

Container 
Boundaries and boundary conditions have always been an integral concern of systems 
theory.48 Open, high dimension, nonlinear conditions that are common in human 
systems challenge traditional understandings of system boundaries. Especially in 
complex human systems, practitioners and theoreticians challenge the traditional ways 
that systems are defined and system boundaries are represented. Boundaries of human 
systems much account for multiple, massively entangled levels of pattern formation, 
from personal insight to mob behavior. At the same time, human system boundaries 
have to account for the fact that “inside” and “outside” have diverse meanings, and that 
those meanings change over time depending on perspective. To meet the needs of both 
flexibility and fidelity to a human system,  the CDE Model must account for system 
boundaries that can be simultaneously open and closed, unitary and multiple, local and 
global. 

In response to this need, the first meta-variable in the CDE Model highlights the 
boundaries of the focal system. This set is called container and is represented by “C”. A 
container, (C), of any self-organizing process includes any condition, or collection of 
parameters, that hold the agents of the CAS close enough together that they can 
interact and form patterns. A particular container may be physical, like a room or a 
mountain range. It may be conceptual, like a national identity, a stated purpose, or 
religious belief. It may be social, like an invitation to a party or an artistic performance. 
As these examples demonstrate, a container can be a bounding condition (fence), an 
attractive condition (magnet), or a combination of multiple mutual attractions (network). 

In any real human system, there are innumerable containers at play simultaneously, and 
usually, the containers are massively entangled. Containers can be simply nested within 
each other, for example, a child is in a classroom, a classroom is in a building, a building 
in a district, and a district in an educational system. More often, however, the relevant 
containers are overlapping and interdependent. For example, the child is a member of a 
family, a scout troop, a baseball team, a cultural community, a gender group, a gang, 
and so on. Standing within all these boundaries simultaneously, the child is a participant 
in many different self-organizing complex adaptive systems. At every moment, the child 
both influences and is influenced by patterns emerging in any of these diverse 
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containers.  

C, in the CDE Model, is the meta-variable that encompasses all conditions that influence 
any particular complex adaptive system at any given point in time. Any particular 
emergent pattern of a CAS involves some subset of all possible Cs, and within a pattern, 
some Cs will be more and others will be less relevant to a particular purpose. For 
example, the child’s elementary school class container may be irrelevant when he or she 
is playing first base, though it does not cease to exist. As intentional agents who see, 
understand, and influence patterns in self-organizing processes, we recognize the most 
relevant containers and focus our attention and action on them. At the same time, we 
understand that innumerable other containers exist and might become relevant at any 
moment. The simultaneous reality of one configuration of containers and the potential of 
another configuration of them allows us to deal with the system as if it were 
simultaneously bounded (to support computation and decision making) and unbounded 
(to represent the openness of observed social reality).  

Containers manifest the self-organizing patterns at a specific point in time, but they also 
influence the potential for change in the pattern in the future by increasing or decreasing 
the degrees of freedom for all of the agents contained in the system. Larger or weaker 
containers reduce the pressure of constraint and increase the degrees of freedom for the 
agents to establish relations and to organize, so the process of pattern formation is 
likely to be slower and less articulated. Smaller or tighter containers, on the other hand, 
tend to increase constraints, decrease degrees of freedom, and so increase the 
likelihood of collision and the speed and clarity of the self-organizing process. 

The correlation between container size and the speed and clarity of the self-organizing 
process serves as an explanation to support decision making and action taking by 
individuals and groups. It is significant to note, however, that the relation-ship is not 
simply causal. A particular change in the size of a container does not necessarily 
determine the effect on the pattern as a whole. The precise relationship be-tween the 
container and the emergent pattern is not predictable in any given self-organizing 
situation because the influence of the container is mediated by the other two conditions 
for self-organizing—D (difference) and E (exchange).  

	  



 
Toward a Computational Model 

16MAY16 
Page 21 of 33 

©2016.Human Systems Dynamics Institute. Use with permission. 

Difference 
Difference has also historically been an important factor in the ontology and 
epistemology of systems, and it is the second condition for self-organizing in the CDE 
Model. Even the ancients recognized the power of difference for causing change and 
making meaning.49 Traditional physics considered difference as the key to all kinds of 
potential energy, and more recently, complexity scholars have explored the power of 
difference in understanding50 and influencing systemic patterns.51 The challenge is that 
in our open, high dimension, nonlinear human systems, we must deal with the fact that 
potential is embedded in many differences simultaneously, and that the relevance of a 
particular difference, and its influence on system-wide patterns, can shift without 
warning.  

As a result, the CDE includes “D” as the second meta-variable to capture the myriad 
differences that influence change in a human system. A difference is any gradient or 
distinction that exists within any given container that bounds the complex adaptive 
system of focus. At a given moment, in any given human system, at any given scale, an 
indeterminate number of differences articulate the systemic pattern and hold the 
potential of the system to change.  

In the system dynamics as captured in the CDE Model, relevant differences serve two 
functions. First, difference articulates a pattern as it emerges out of self-organizing 
interaction. Difference allows the pattern to be observed, analyzed, and influenced. 
Differences can be physical, emotional, social, political, financial, or any other dimension 
you can imagine. They may be subjective, objective, or normative. Regardless of the 
substantive manifestation of the difference, as agents interact, the interactions among 
their different characteristics manifest a pattern across the system. At any point in time 
or location in space, the pattern of a CAS consists of variation in one or another 
characteristic among the agents bounded by a given system container. For example, in a 
team, differences in expertise might contribute to the pattern of high performance. In a 
neighborhood, differences in household income might contribute to the architectural 
design for the whole. In a nation, differences in political assumptions and values shape 
the pattern of decision making and action for the government. Differences are relevant 
in different ways in different containers. For example, height can be a difference that 
makes a difference on a basketball team, but it might be irrelevant in an academic 
learning environment. Difference may refer to the degree of variation (more or less tall, 
more or less happy) or to the kind of variation (height or attitude). Discrete and large 
differences build clear patterns, and continuous differences or small ones contribute to 
fuzzy or ambiguous patterns.  

The second function served by difference is to establish potential for change. Potential 
energy in physical systems is an example of the motive power of difference. Difference 
in height, spring tension, and heat are all examples of the ways in which potential for 
change is “stored” in differentiation between or among system-wide parameters. In 
human systems, the tensions created across differences also motivate action. The 



 
Toward a Computational Model 

16MAY16 
Page 22 of 33 

©2016.Human Systems Dynamics Institute. Use with permission. 

teacher knows more, and the student wants to learn. The racist is moved to violence. 
Platforms of political parties motivate voters. Gender, values, expertise, wealth, 
curiosity, expectations, age, power, faith commitments are just a few examples of 
differences that can hold the potential energy of  a human system at any point in time. 
Any of these differences may shift a relevant pattern and result in new patterns self-
organizing across a single human scale or between scales. For example, my level of 
confusion results from a difference within my own cognitive frame. It may cause me to 
bother my neighbor, and together we may interrupt the flow of an otherwise orderly 
class. A difference at one place or scale of a system motivates the local pattern to shift, 
and a shift in local pattern may result in shifts at a more global level.  

Difference is such a powerful influence on change because it, too, represents levels of 
constraint (degrees of freedom). Large differences increase degrees of freedom and tend 
to motivate rapid or more turbulent change, while small differences constrain degrees of 
freedom and, therefore, convert more slowly. A system with few relevant differences 
(lower degrees of freedom, more constraint) will manifest a clear and coherent pattern, 
while one with many relevant differences (higher degrees of freedom, less constraint) 
may appear random and be stuck in an entropy trough.  

Conversion of the potential energy of difference to the kinetic energy of change in a 
human system is not simply a causal process. At any moment, differences in multiple 
containers are influencing each other. For example, a social definition of political 
correctness, and my desire to make a good impression on my boss, may damp my 
action in regard to my political or racial bias. Even within the same container, multiple 
differences vie for dominance in the self-organizing process. For example, I love 
chocolate, and I am committed to weight control. Sometimes one difference sets the 
potential for action, sometimes the other does, and sometimes two differences are 
balanced, and the result is stasis.  

The meta-variable of difference, both as demonstration of current pattern and 
motivation for change in the future, establishes another link in an explanatory pattern 
that can inform observation, meaning making, and action for people engaged in social 
systems. As long as any one difference or small set of differences is relevant at a given 
instant, the system may be manipulated as if it were simply a low dimensional 
phenomenon. Because “D” is a meta-variable, the CDE problem space is tractable 
enough for individuals to see (and groups to discuss) coherent mental models of a self-
organizing social system. On the other hand, because an unlimited number of 
differences can be represented by “C” in the CDE, the system as a whole can be 
understood simultaneously to function in high dimension problem. In this way, the 
model matches both the need for tractable representation and infinite variety of real 
experience.  
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While changes in “D” shift patterns in a system, they do not allow for total prediction or 
control. Multiple interacting differences influence a given pattern at a given moment, so 
an intentional change in one may be distorted or damped by any other. Even if 
differences are constrained to a small and manageable number, a change in the complex 
human system cannot be controlled. By itself, or even in tandem with defined 
containers, difference can influence direction but not pre-determine outcome of a self-
organizing process. The final set of meta-variables that simultaneously influence the 
emergent self-organizing patterns involves the connections across the system that allow 
difference to accumulate or dissipate.  

Exchange 
From feedback in traditional systems dynamics modeling52 to the theory of constraints53 
and complex responsive processes54 the idea of flow has been essential to conceptual 
and computational models of human systems. In the past decade, nonlinear 
relationships and feedback loops have been accommodated in models of human 
interaction, but they have usually been conceptualized in the context of low dimension 
and/or closed systems. When a nonlinear relationship is embedded in a quasi-bounded, 
high dimension space, it quickly becomes intractable. When coupled with high dimension 
and open boundaries, feedback has resulted in system patterns that are either 
disordered or radically subjective. These are critical modeling challenges because it is 
just such exchanges, in open and high dimension space, that are critical to 
understanding and action in human systems.  

To meet this requirement, the final meta-variable in the CDE connects across the system 
to realize the potential stored in any of its differences. We call this meta-variable 
exchange and represent it by “E”. Exchange includes any transfer of information, 
energy, force, signal, material, or anything else between or among agents. It appears as 
flow from one part of the system to another and it establishes relationships that are 
observed before, during, and after self-organizing processes in human systems.  

While many kinds of exchanges influence pattern formation in human systems, the 
easiest to visualize is the flow of information during a conversation. Two people hold 
different views or expectations (D). When they come together for a particular purpose 
(C), they exchange (E) information, and if everything goes well, a coherent pattern of 
the whole emerges. The emergent pattern is not predictable. It may be increasing 
anger, distrust, frustration, and separation, or it may be shared mental models and 
harmonious friendship. The presence of the exchange cannot pre-determine the nature 
of the emergent pattern, but the absence of exchange will result in no shared pattern at 
all.  

Exchanges are taking place in many different containers and across many different 
relevant differences simultaneously. An individual is thinking about one thing, her team 
is focusing a conversation on another, senior management is assessing the team’s 
performance against others, and other firms in the industry are seeking competitive 
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intelligence. All of these Es are simultaneously influencing the emergent patterns at all 
scales of the system. A change resulting from one may well influence the efficacy of 
another. Exchanges that are invisible to one system participant may be quite powerful 
for another, and those that are global and formal are often less powerful than those that 
are local and informal.  

Like containers and differences, exchange derives its influence on systemic behavior 
from increasing or decreasing degrees of freedom. The power of a given exchange is 
denoted by limiting degrees of freedom by the tightness of the connection it establishes 
across differences in a system. Tightness is determined by a variety of factors, including 
speed (time required to complete the connection), width (number of differences 
considered), strength (size of differences traversed). Tighter exchanges (increasing 
constraint and reducing degrees of freedom) tend to speed up self-organizing processes, 
and weaker ones (lower constraint, more degrees of freedom) slow it down. When 
exchanges are absent, no self-organizing change will occur at all.  

Again, the “E” meta-variable can be used to assess and influence self-organizing 
patterns as they emerge. One might tighten exchanges to increase the speed and 
influence the outcomes of a self-organizing process, but the results of that intervention 
are unpredictable. The relationship is not simply causal. The variability of competing 
exchanges and the indeterminacy of containers and differences in the system at large 
make the future unknowable, even while exchanges can be manipulated with the 
intention of influencing the speed, path, or outcomes of a self-organizing process.  

Interdependencies among C, D, E 
The indeterminacy of the meta-variables of C, D, and E help capture the open, high 
dimension, and nonlinear nature of human systems. The relationships among the sets of 
meta-variables account for the emergent, self-organizing dynamics of those systems. 
Variability of the speed, direction, and outcome of a self-organizing process is influenced 
by the dynamic relationships among members of the same variable class within each of 
the meta-variables (C1 to C2, D1 to D2, or E1 to E2). The process is also influenced by the 
nonlinear relationships among the three collections of meta-variables (Cn to Dn to En). 
These interdependencies generate a variety of interesting consequences that increase 
the fidelity of the CDE Model to the lived reality of self-organizing processes in human 
systems. A shift in one difference begins a self-organizing shift in other differences, as 
well as in multiple exchanges within the same container and in related containers as 
well. For example, I observe an anomaly (D1), this causes me to question (E1) other 
observations (D2) in the current experiment (C1) as well as to challenge a protocol (E2) 
that might be used by others on my team (C2). Given the number of variables 
represented with each meta-variable and the interconnections among the meta-variables 
in any system moment, it is easy to understand how complex adaptive systems are 
sensitive to initial conditions. This complex interdependency among system conditions 
helps explain why complex adaptive systems can be unpredictable at the local and 
patterned at global scales.  
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Any feature of a social system that might influence a self-organizing pattern can be 
accounted for in this conceptual model. Even system features that would otherwise be 
seen as extraneous can be incorporated into the CDE portrait of any systemic pattern. 
The only adjustment that is required is to recognize the larger, relevant container that 
encompasses both what was originally “outside” with what was “inside.”  And, because 
the three conditions do not depend on time or distance, a CDE portrait is necessarily 
scale-free. For example, when we work with teachers in the throes of school reform, 
they focus primarily on their classrooms (C1) and their students (C2). When they 
perceive the requirement for high-stakes testing (E1), they see it as an external force 
(C3) that is being imposed on them and their students from the outside. Instead, we 
encourage the teachers to see high stakes testing as a difference that makes a 
difference (D) in their classrooms. By recognizing the test as a part of a classroom 
pattern, rather than an external imposition, new options for teaching and learning (E2) 
emerge. 

The three conditions (C, D, and E) are mutually determined, so changes in any one 
spontaneously result in changes in the other two conditions. It is possible that the 
broader universe of conditions holds a particular pattern (C or D or E) in place, so an 
adjustment may not be immediate or predictable. Ultimately, as the related conditions 
shift, more and more energy is required to resist the tendency of the system to adapt 
internally. For example, a corporate focus on profits (D1) as a sole difference that makes 
a difference can pre-determine (E1) policies and procedures (C1) that contradict (D2) 
individuals’ (C2) personal values (D3). If exchanges are established that allow employees 
who share values to talk (E2) with each other, they may amplify the values difference 
between them and their boss and, ultimately undermine profit-dominated patterns of 
behavior. 

Difference and container have a special relationship in the context of complex adaptive 
systems. Within a container, a difference can denote a pattern and set conditions for 
self-organizing change. At the same time, if that difference is great enough, it may 
overwhelm exchanges that mediate the difference within the whole, until the system 
bifurcates along the fault lines formed by the difference. When this happens, the 
characteristic that functioned as a difference previously is transformed into a container, 
which bounds a new and somewhat autonomous system. In an opposite process, two 
containers may be connected by an exchange that is strong enough to elicit a shared 
pattern. In that case, the previous containers become mere differences that make a 
difference within a new emergent whole. Examples of both of these situations abound in 
real human systems. A team includes people of both genders, so gender is a difference 
that may or may not make a difference. A sexist joke or a harassing behavior can turn 
that difference into a container in which the men and the women face off against each 
other. At the same time, race and experience, which were also differences within the 
original container, may be invisible and equally distributed across the system, waiting 
for circumstances that transform them into features that contain rather than just 
differentiate an emerging pattern.  
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Recognizing the features that contain, differentiate, and connect across self-organizing 
patterns allows a conscious agent to observe the process of change as it occurs. 
Understanding the relationships among the conditions for self-organizing and seeing the 
pattern from a variety of perspectives allows the conscious agent to make meaning of 
social change as it emerges. Acknowledging options for action and anticipating the 
nonlinear consequences of a change allows the conscious agent to take intentional action 
to shift patterns in the course of self-organizing. Finally, continuing to observe the 
system patterns in formation allows the conscious agent to take adaptive action to 
amplify opportunity and mitigate risk in real time.55 These three iterative problem 
solving steps—observe, understand, influence—engage the ac-tor/observer with patterns 
as they emerge. They are the foundation of adaptive action and adaptive capacity for 
individuals, communities, and organizations.  

4.3  Implications of the CDE Model 

The CDE Model addresses and resolves many of the limitations of models of human 
systems that were informed by Newtonian and previous applications of complexity 
science, but it also introduces some challenges of its own as a foundation for either a 
conceptual or a computational model.  

Like other complexity-inspired models, the CDE is able to address phenomena across 
levels of organization. As we stated before, none of the meta-variables necessarily 
includes either time or distance, so they are applicable on any scale of human system, 
as well as across scales in the same system at the same time. For example, one might 
map the containers, differences, and exchanges involved in the self-organizing process 
of one person (C) falling (E) in love (D). At the same time, a single container might 
include the other lover (CDE), a balcony (C) and a dialogue (E) about the moon (D), a 
CDE of families in conflict for generations, and a city containing both a crypt and a bottle 
of poison. Shakespeare’s portrait of such tragic self-organizing has persisted for 400 
years56.  

The CDE Model represents human systems as simultaneously open and closed. While 
one might focus on a single configuration of C, D, and E at one moment, it is done with 
the consciousness that an infinite number of other containers, differences, and 
exchanges might become relevant at any moment. For example, a particular orphaned 
boy might live in a shack (C) with his mean (D) sister and ineffectual (D) brother-in-law 
who cared (E) for and ridiculed (E) him. A chance encounter (E) with an escaped (D) 
convict in a river (C), can transform his life into one of Great Expectations, thanks to 
Charles Dickens57.  
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CDE as a conceptual model also opens the space for a system to be both high and low 
dimension at the same time. Differences that make a difference at one moment may be 
supplanted by any one of a slew of other differences, all of which fit into the category of 
conditions represented by the meta-variable, D. In the touching short story of de 
Maupassant called The Necklace58, an eager and aspiring young woman was destroyed 
when she borrowed elegance to impress others and discovered too late that a life 
invested in diamonds purchased only cheap paste.  

The CDE Model matches the nonlinear causality that is so familiar in human systems. 
The massive and mutual interdependency among the meta-variables reflects the 
massive interdependency among the conditions that shape the speed, direction, and 
outcomes of real self-organizing processes in the real world. For example, Tolstoy’s War 
and Peace59 demonstrates over and over the powerful interdependencies with and 
among nation, family, community, identity, and class (Cs) with wealth, role, status, 
location, personal loyalties (Ds), and love, speech, violent conflict, and exchange of 
money (Es). These same meta-patterns have repeated throughout history, while the 
particular conditions have changed with the decade and the continent.  

The dynamics of CDE are not predictable, but they are not random either. Changes in 
one condition or pattern are highly correlated to changes in others, both local and 
distant. On the other hand, CDE can account for random behavior when the conditions 
are under-constraining. Low constraint happens when the C is large, the Ds are many, 
and/or the Es are weak. In these situations, the coupling and correlations among the 
conditions for pattern formation are so low that system behaviors may be 
indistinguishable from randomness. It is hard even to imagine an example of a human 
system that is loosely enough constrained to appear random. In the past, in all cultures, 
literature, folk tales, and history take what may appear to be random and give it 
structure and meaning. Even the experience on a battlefield in Homer’s Iliad60 is full of 
examples of people making meaning by naming families (Cs), recognizing insignia (Ds), 
and shaking the hands (Es) of enemies before engagement (E).  

In addition to resolving the limitations of traditional models of social interaction, the CDE 
Model also resolves challenges unmet by other complexity-inspired models. The CDE 
captures the underlying dynamics of self-organizing processes by naming the categories 
of constraint that initiate and influence the shape of emerging patterns as well as the 
process of emergence. Because it explains underlying interrelationships, it can be used 
to inform intentional action to shift the conditions and, one can hope, influence the 
future path and outcomes. The causality is not absolute, and results are not predictable. 
The complex interactions among self-organizing conditions, both seen and unseen, make 
unintended consequences not just common but expected. Ancient Greek tragedy 
captured these dynamics in compelling ways. Oedipus saw, understood, and took action 
to influence a pattern when he defended (E) himself (C) and his honor (D) against a 
stranger (D). It was a lifetime (C) later when he realized he must pay (E) the price of a 
fratricide (D)61. 
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Finally, the CDE Model allows an observant actor to anticipate the future consequences 
of current action. In this way, the CDE allows a conscious actor to construct a conceptual 
model of an ethical dilemma. We can consider multiple options for action and imagine 
possible consequences, risks, and benefits for each option. When a choice is made, the 
consequences may or may not be as anticipated, but each cycle of adaptive action 
informs the next, so individuals and groups can learn and improve their capacity to 
adapt and influence patterns over time. The Count of Monte Cristo62 schemed a whole 
lifetime to influence the patterns of jealousy and corruption that plagued his life. He 
understood enough about the people and their culture to set conditions and influence 
the pattern that gave him vengeance against his enemies.  

The CDE Model, as a conceptual representation of the complex dynamics of human 
systems, meets the challenges set out at the beginning of this paper. The CDE Model of 
the conditions for self-organizing in human systems 1) represents the complex and 
unpredictable dynamics of human systems; 2) works at all scales from intrapersonal to 
global; 3) provides information about future systemic behavior, even knowing that the 
future of complex systems cannot be predicted or controlled; 4) provides sufficient 
explanation of interactions within the system to inform options for action and anticipated 
possible outcomes; 5) reveals meaningful patterns even in systems that are open, high 
dimension, and nonlinear; 6) represents the diversity of the parts and the coherence of 
the whole simultaneously; 7) provides sufficient explanatory foundation to inform wise 
and responsible action, even under conditions of the greatest uncertainty. 

 As a conceptual model the CDE has been tested in a variety of contexts and under a 
wide range of conditions. It is currently informing theory and practice in education, 
school reform, program evaluation, occupational therapy, conflict resolution, 
organization development, management, leadership, team building, advocacy, public 
health, public policy advocacy and implementation at all levels of governance, human 
resource development, facilitation, diversity, ethics, and community development63. As a 
qualitative tool, it supports individuals and groups as they engage in adaptive action to 
see, understand, and influence the self-organizing patterns of complex human systems. 
The outstanding question is if and how the CDE Model might also form the foundation for 
a computational model of individual and collective human behavior.  
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5  Computational Model of Human Systems Dynamics 

Over the years, we have experimented with a variety of computational models to 
represent the complex dynamics represented in the CDE Model. The most successful 
efforts at inductive model building and testing have focused on qualitative descriptions 
drawn from narrative or shared dialogue. In a few failed efforts, we have tried a variety 
of inductive and deductive mathematical models, including time series analysis, fuzzy 
logic, genetic algorithms, and dynamical networks. It is not possible for us to know 
whether these failures were a result of an incomplete conceptual model, the lack of 
model specification, misfit of method to model, or lack of sufficient sophistication with 
the various modeling approaches. It is possible that anyone or a combination of all of 
these problems limited our success.  

We continue to search, however, for a computational model that represents systemic 
patterns of human systems dynamics that are open, high dimension, and nonlinear, like 
those represented conceptually by the CDE Model.  

The model we propose will represent the C, D, and E as meta-variables that de-scribe 
functional clusters of conditions that constrain and inform systemic patterns. At the most 
macroscopic level the three conditions are co-active collections of parameters that exist 
in the particular situation. A collection of “containing” characteristics holds the system 
together without generating an impermeable boundary. A collection of “differentiating” 
characteristics articulates the pattern and provides the energy and directionality for 
change to occur in the future. A collection of “exchanging” characteristics moves 
information, material, and energy around the system to release tension of difference in 
one physical or conceptual place and contribute to accumulating tension in another.  

The model will make it possible for relevant Cs, Ds, and Es to be unique in any given 
situation and at any given time. Over time, even if the context remains constant, 
different Cs, Ds, and Es can increase or decrease in relevance to shift the pattern into 
self-organizing change and transform the potential energy stored in the pattern into 
actual systemic change.  

In a robust computational model, a single feature might serve the function of container, 
difference, or exchange, depending on the context and the perspective of the system 
observer and the intention of the system analysis. In practice this happens often. I 
belong to a team (C). My team behavior is different from my other professional behavior 
(D). When I am in meetings, my team communications (E) are clear and effective. The 
computational model will need to acknowledge and incorporate this local specificity and 
global ambiguity.  
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The computational model would support nonlinear interactions among individual 
parameters as well as clusters of meta-variables representing the Cs, Ds, and Es, so that 
a change in one generates a change in the other where the tendency or direction of 
change can be anticipated, though the specific outcome is indeterminate. For ex-ample, 
I expect for the noise level (D1) to decrease when I move a party to a larger space (C), 
but perhaps the guests will simply talk louder (E), and the overall volume (D2) will 
remain unchanged.  

An adequate model would support manipulation of a complex combination of 
constraints—of the three conditions on each other or of particular conditions on others of 
its same kind. A combination of conditions might influence the emergent patterns within 
the system and provide options for action for individuals and groups interacting with the 
system. In this way, it should be possible to model changes in multiple Cs, Ds, and Es 
either in series or in parallel. For example, if we simultaneously moved to the larger 
room (C) and encouraged people to dance (E), what would happen to the volume in the 
room (D)?  What other conditions, perhaps not observed previously, would emerge as 
relevant to the pattern?   

A model that met these criteria would represent human systems dynamics in a way that 
would be simultaneously flexible enough to match lived experience and elegant enough 
to support realistic processing and interpretation.  

6  An Invitation 

In this document, we have summarized and critiqued a variety of models designed to 
represent the dynamics of human systems. Some are based on traditional understanding 
of mathematical, physical, and social relationships. Others are based on nonlinear 
dynamics and principles of emergence in complex adaptive systems. All of these models 
have proven useful in specific applications in a variety of social science inquiries, but 
they all fall short of capturing the open, high dimension, nonlinear interaction of human 
systems dynamics or of providing sufficient explanation to support prospective 
understanding and action.  

While the CDE Model has proven to be a robust and useful interpretive conceptual 
model, its value to both research and practice in social sciences will be immeasurably 
enhanced when it can inform a computational model. Such a model will capture the 
nonlinear nature of the dynamics of human systems to inform the work of scholars and 
practitioners who face complex and emergent personal, professional, and political 
challenges. Scholars would use such a model to develop and test hypotheses about self-
organizing dynamics at all scales of human interaction. Practitioners would use the 
model to inform decision making in real time and to develop individual and group 
capacity through training and instruction. Individuals and groups would build adaptive 
capacity to see, understand, and influence complex and unpredictable patterns as they 
emerge.  
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The network of Human Systems Dynamics scholar-practitioners invites you to engage 
with us in an inquiry that moves the CDE Model from the realm of conceptual and into 
the realm of computational modeling. Together we might create a model to help scholars 
and practitioners explore and develop adaptive capacity to leverage the emergent 
potential in our social systems today and into the unknowable future.  
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